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The recently proposed electron-hole potential (EHP) method for excited states is extended to the 
multi-configurational case. The variation equation is solved using the quadratic convergence method. 
The EHP methods are shown to be approximations to the complete singly excited configuration 
interaction (CSECI) in the variational sense. Extended Brillouin theorems are proved for the EHP 
methods. The excitation energies and wave functions obtained by one and two configurational 
EHP methods agree well with those of the CSEC! method. The EHP methods have clear 
advantage in the computer time requirement over the CI method and are especially suited for a 
calculation of approximate excited states of large molecules. The EHP methods are applicable to 
excited states which belong to the same irreducible representation as the ground state. 
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1. Introduction 

In the past several years the ab initio SCF M O  method  based on the R o o t h a a n  
Equat ion  [1] has been extensively used to calculate the wave function, the 
energy and properties of closed shell molecules. These calculations have shown 
that  the SCF M O  method  of the closed shell system is extremely powerful in 
predicting the geometry and many  other physical properties of the g round  state 
[2], though  the method  does not  take the electronic correlat ion into account.  
Several methods  have been proposed  for calculation of wave functions of  
excited states of a closed shell molecule:  the Har t ree -Fock  method  for the open 
shell system [3, 4], the tradit ional  and more  elaborate, (iterative) configurat ion 
interaction (CI) [5], and still controversial  equat ion of mot ion  method [6]. 
The CI  method  is extremely time consuming especially for large molecules in the 
integral t ransformat ion step. The mult iconfigurat ional  wave function also makes 
the analysis more  complicated. The straight Har t ree -Fock  method  cannot  be 
applied to excited states which belong to the same irreducible representat ion as 
the g round  state. 

Very recently we proposed  an extended Har t ree -Fock  theory for excited 
states or the electron-hole potential  (EHP) method  [7]. This method  is an 
extension of  the t ransformat ion of  virtual orbitals, which has been proposed  by 
many  [8], to the t ransformat ion of both  occupied and virtual orbitals in order  
to minimize the energy of an excited state. The E H P  method  is equivalent to the 
method  proposed  independent ly  by Davidson  [8] based on a somewhat  different 
consideration. 
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The EHP  method gives a well defined single configuration wave function, 
which is very handy for calculation of molecular properties. The EHP single 
determinant wave function does not include the correlation energy, and can be 
compared almost directly with the ground state SCF wave function. The EH P  
wave function for an excited state is guaranteed to be orthogonal to the ground 
state. So the method can be applied to an excited state belonging to the same 
irreducible representation as the ground state. The computer time required for 
an E t t P  calculation is of the comparable order with a ground state SCF 
calculation and is much smaller than a C1 calculation, especially for large 
molecules. 

The EHP  method has been successfully used to calculate the hydrogen bond 
energy of lower excited states for the formaldehyde-water system [10, 11], the 
acrolein-water system [12], and the stabilization energy and geometry of the 
charge transfer state of the cyanocarbonyl-ROR and tetracyanoethylene-ROR 
complexes [13]. 

For  some excited states, however, the E H P  wave function is not quite 
appropriate. One such example is excited state of a dimer, a complex between 
two identical molecules. Let us assume for simplicity that two molecules in the 
dimer is related to each other by a symmetry operation. Then occupied orbitals 
of the dimer will form a set of two which can be approximated by plus and 
minus linear combinations of monomer orbitals: 

~pno . n o .  ~ p n o  
+_ ~ W 1  ! �9 

Similarly for vacant orbitals of the dimer: 

q, r v ~ .  rv ~pzrv. 
+ q~x - 

If one takes a single configuration wave function in which one electron is excited 
from, say, tp~+ ~ to, say, ~r+v: 

~,(~+o ~ ~+v) ~ ~ ( ~ o _ ,  ~ff) + ~ , (~o_~  ~ff) + ~ , ( ~ o  ~ ~ v )  + ~,(~,o ~ ~ v ) ,  

one finds this wave function includes with an equal weight the intramolecular 
excitation and the intermolecular charge-transfer excitation. Usually the energy 
of the intramolecular excited state is different from the intermolecular one. In 
order to allow the mixing of intra- and inter-molecular excitations in a correct 
weight, the wave function must be at the simplest a linear combination of two 
configurations, such as 

C1 ~(~H+O ~ q~L+V) + C2 7'0;-"~ _~ ~_Lv) 

c3 ~e(~pB+ ~ ~_v) + c,~ ~(,f_o__, ~+v) . 

Here a multiconfigurational wave function is needed even for a qualitative 
purpose. 

Another example consists of some excited states of particular molecules such 
as the lowest n-n* singlet state of formaldehyde and ethylene and the B 3E,- 
state of oxygen [14]. In these cases the n-n* configuration mixes strongly with 
o---~* configurations. Therefore at least two configurations are required to 
describe these state semi-quantitatively. 
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Multiconfigurational (MC) SCF methods have been successfully used for 
such cases [15]. Considering the advantages of the EHP method for the single 
configurational case, we have developed the multiconfigurational E H P  method. 
Even though the discussion is restricted to the two configurational (TC) E HP  
method in this paper, an extension to more than two configurations is straight- 
forward. 

2. Review of One Configuration Electron Hole Potential (EHP) Method 

The starting point of the method is the canonical SCF molecular orbitals 
{~v} which diagonalize the Hartree-Fock operator F of the closed-shell ground 
state. The total wave function of the ground state in the SCF approximation is 
given by a single Slater determinant as, 

whose total energy is called E 0. Here ~r is an antisymmetrizer operator. 
Before developing the two-configurational (TC) E HP  method, it is con- 

venient to review the (one-configurational) EHP  method. We will use the second 
quantization form for convenience. 

We write the wave function of an excited state, singly excited from the ground 
state, in the following form. 

T(@~-+ q~.) -- (1/]/2) [A*~A~ + A~Aj  [G> (2) 

where A~ and A~ are the annihilation operator for q~ and the creation operator 
for ~bu, respectively, with - referring to a/3 spin and no - to an e spin. The upper 
and lower signs in Eq. (2) and throughout the paper correspond to the singlet 
and triplet states, respectively. In the EHP  method we assume that the 
operators A~ and A*, are expanded in terms of the annihilation and creation 
operators Aj and At of canonical SCF occupied MO's tpj and vacant MO's ~Pk- 

0 c r  v a c  

A~ = Z Ajbj~, A~ = Z A~bk,. (3) 
j k 

That is equivalent to saying that the M O  ~b, and q~, are expanded in terms of 
~p]s and lPk'S, respectively. The normalization of q~ and qS, is equivalent to the 
anticommutation relations 

[a~, A~]+ = 1, [A~, a u] + = 1. (4) 

By using the Hartree-Fock operator F for the ground state, the energy E(a~ 16 
of the excited state T(qS, ~ 4~) is a function only of r and q~u: 

E(c~/ / )  = E o + (~b u IF I q~u) - <~b= IF] 4)=) - L~ u (5) 
where 

L~= <~I ~+~> - <~a+~l +.+~> T <~a~l+.+~> 
(6) 

1 
($~q)~ I qS;~,> = j qS*(1) q),(1) q5~(2) ~b,(2) dzl dzz. (7) 

r12 
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MO's  ~b, and ~bu, i.e. the expansion coefficients {bj~} and {bku } of Eq. (3), are 
determined by the variation method such that the energy E(a~/~) is minimized. 
The coupled equations to be satisfied by ~b~ and ~ are given by: 

(F + L,.) I ~b~> = 2~ I~b~> 

(F - L~) I ~b.> = 2, I ~b.>. 
(8) 

By inserting Eq. (3) to Eq. (2), one can express the EHP wave function 
T(q~,~ q~u) as a linear combination of singly excited configurations T(~pj~Vk) 
based on the canonical SCF MO's. 

oct va~ 

~(,~ ~ dp~,) = ~ ~ (bj, bku/~ ) [A~Aj+_ A~kAj] IG) 
j k (9) 

or vac 

= ~ ~ b~b~P(~Pj~tPk). 
j k 

In the configuration interaction method including only all the singly excited 
configurations (called C (complete) SECI), the wave function of the excited state 
is written as 

ocr vac 
~JSECI = ~ 2 CJk (1J(~)J "--> ~)k)" (10)  

j k 

Comparing Eq. (9) with Eq. (10), one can see that the m~ x m, variation parameters 
Cjk in CSECI are decoupled into products aj, "bku in EHP, in which (m, + mu) 
coefficients, aj~ and bk,, are determined variationally. Here m, and m u are the 
numbers of the occupied and vacant MO's belonging to the same irreducible 
representations as q~, and 4% respectively. 

3. Two-Configuration (TC) EHP Method 

The starting point of the T C E H P  method is the canonical SCF molecular 
orbitals as in the one configurational E H P  method discussed in Section 2. The 
above formulation can then easily be extended to the two- (and multi-) configu- 
rational case. In the T C E H P  method the wave function of the excited state is 
assumed to be written a linear combination of two excited configurations as 

ipTC = B~u ~U(~b~-~ ~b~) + B~ tP(~bp-> ~b~) (1 l) 

where ~ ( q ~  r and ~(4~p~ ~b~) are defined by Eq. (2) under the restrictions of 
Eq. (3). By using the variation method, the coefficients B,,  and B~, and new 
MO's q~, ~b,, q~n, and q~ are determined under the orthonormal conditions 

<r ~ , )  = <0.1 ~ )  = o ,  02) 

< ~uTC I ~+c)  = 1. 
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Since the energy of the excited state is written as 

ETC = Eo + (B~u)2 [<4u I FI 4u> - <4~ IF [4~) - L ~ ]  

+ (Ba~) 2 [<4~ I FI G> - <4a [FI 4a> - L ~ ]  (13) 
#v vg 

- B~,,Bav [La~ + L~ a] 

the coupled equations to be solved are derived as follows: 

(B,u) 2 (F + Lu,) 14,) + B,uBp~Lv, kb~> = L4,> fl~, + [4e) 2~, (14a) 

B.,B~Luv 14.> + (B/~v) 2 (F + L~) [4p> = 14.> 2~r + I4B) fl~ (14b) 

(B.u) 2 (F - L~) 14.> - B~.B~Lt3~ 14~> = 14.> )tu. + 14v> 2.. (15a) 

-B~.B~L,~ 14.> + (B~d 2 (F - L~i)IG> = 14.> ,~.~ + IG> 2v~ (15b) 

where 2's are the Lagrange multipliers and the L operators are defined by 
Eq. (6). By using the expansion Eq. (3), Eqs. (14) and (15) can be written in a 
matrix form as 

G~b~ + G~b~ = b~2~ + b~2~ (16a) 

G~b~ + G~ab~ = b~2~ + bp2~ (16b) 

Guub ~ + Gu~b~ = bu2uu + bv2~u (17a) 

G~,b, + G~vb~ = b ,2~  + b~2~ (17b) 

where, for instance, 

(G~a)j j, = ( B a u )  2 (,~vj[F+Luullpj,) j and j': occ. orbitals 

(Gv~)kk' = (Br z (~pkIF--Lpal~Vk') k and k': vac. orbitals 

and b~ is a column vector whose elements are bj~. 
In addition there is a 2-by-2 CI secular equation to be satisfied by B,, and 

B,~. From here one we assume for simplicity the coefficients, B's and b's and 
the G matrices are all real. 

The coupled Eqs. (16) and (17) do not constitute a diagonalizable pseudo- 
eigenvalue problem but can be solved by the use of so-called quadratic con- 
vergence method. As an example, we show how to solve the set of Eq. (16). An 
approximation to B~u, B~, 4.,  and 4~ is assumed to be known and is used to 
calculate G matrices. It is also assumed that approximate values (zero-order 
solutions) of coefficients, b ~ and b~, which are orthonormal, are known. Applying 
the Newton-Raphson method, one can obtain the following set of simultaneous 
equations to the first order in the changes 3b~ and fibs: 

( G ~ -  2L) 6b~ + (G~ -2p~) 6b~ - b~ 62~ - b~ 32~ 
(18a) 

= - [ (G~ - ~o )  t,o + ( G ~  - G )  t,~] 

(18b) 
= - [ ( G ~ , -  2 o )  bo + ( 6 . _  2 ~ )  ~ 3  

where 2~ are defined as - 

0 __ ~ 0  0 ~ 0  0 2 ~ -  b~ G~ b~ + b~ G~ b~, 7, 6 = c~ or ft. 
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The changes of the Lagrange multipliers 
be obtained by multiplying ~o and b~ on Eq. (18) as follows: 

~,~== = / , o  (G:: _ ,~o) ~b:  + ~,~~ (G:p - ,~:)  ~b  e 
__N0  0 - -  

5 2 e : -  b e ( G : : -  2 : : ) J b : + b ~ ( G :  e 2~:)6b e 

'~:e = i ' ~ 1 7 6  5b:  + ~,O(Gee _ , ~ e )  5 b e 

- 2:~) 6b~+ b , (G,e  - 

are functions of 6b~, and ,Sb e and can 

(19a) 

(19b) 

(19c) 

(19d) 

For the variation equation to be meaningful, the off-diagonal Lagrange multi- 
pliers must be equal to each other. 

2~ = 2=~. (20) 

In order to force the solution of Eq. (16) to satisfy the relationship (20), only 
one of two off-diagonal multipliers, for instance, 2:p should be used in Eq. (18) 
[4b]. By inserting Eqs. (19a), (19c), and (19d) into Eqs. (18a) and (18b), the 
simultaneous linear equations to be solved are obtained. 

[(1 o :0 o o no - b= b:) (G=  - L~) - b~ b= ( G ~  _ ,~op)] ~ b= 
+ [(1 o ~o o o no o - - 2~p) - ~ bp (21 a) b~ b:) (a~e b e b= (Gaa - 2ep)] 

0 0 = - [(G:~ - ,~o) t,o + (G:e _ "~=e) t 'A 

- b:  b~ - b~ be) (Ge~ (1 ~176 ~176 -2~ 

+ (1 o ~ o o ~ o 2~e ) 6 b e (21 b) - b: b~ - b e be) (Gee -- 
0 0 = - [ (6e :  - '~ :e )  b= + (G,e - , ~ )  b ~ ] .  

By multiplying b~ from the left of Eq. (21a), one can show the relationship: 

2:~ + 62:e = 2~: + c52e:, (22) 

that is, the Hermiticity of Lagrange multipliers, Eq. (20), is satisfied by the 
solution of Eq. (21) within the first order of the changes of coefficients. And 
this Hermiticity assures the orthogonality of the orbitals ~b~ and q~a within the 
first order [ 18]. 

If the orbitals q~, and ~ba belong to the different irreducible representations, 
the off-diagonal multiplier, 2:~ = 2~:, is zero, so that Eq. (21) can be simplified as 

(1 o ~o 0 -- - b: b~) G~eJb e b : b ~ ) ( G : : - 2 J J b : + ( l  ~176 
(21a)' 

= - [ ( 6 : :  - ~0 )  b ~ + 6 , ~  b~] 

(1 - b~ b~) Gr + (1 - b ~ / ~ )  (Gaa - 2~a) 6ba 
(2lb)' 

= - [G~: b ~ + ( G ~ -  ~ )  b ~ ] .  

Once the solutions Jib: and 3b~ of Eq. (21) are obtained, the new approxima- 
tions for b: and b e are calculated by replacing b ~ and b~ by b ~ + 6b= and 
b~ +f ib  e, respectively. This process is repeated until Jib: and 5b e become less 
than a predetermined threshold. This method is much faster than solving the 
eigenvalue problem. The vectors b: and b e thus obtained are the solutions of 
Eq. (16) for a given set of B~u, Be~, ~bu, and r 
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Practical procedures for completely solving the TCEHP problem are as 
follows; 

(i) In the two-configurational wave function, Eq. (11), assume that MO's q~, 
q~p, ~b~, and q~. are SCF occupied and virtual MO's of the ground state. 
Namely, b~, b~, b., and by are assumed, as an initial guess, as unit vectors. By 
solving a 2-by-2 CI matrix, determine coefficients B~, and B~. 

(ii) By using B's, b~ and bp determined above, set up Eq. (17). New vectors 
b', and b'~ are calculated by solving iteratively the simultaneous equation 
similar to Eq. (21). Using b~, b~, b',, and b'~, determine new coefficients B's 
from the 2-by-2 CI matrix. 

(iii) By the use of B's, b'. and b'~ determined in (ii), set up Eq. (16). New 
t vector b'~ and b~ are obtained by solving iteratively Eq. (21). Using b'~, b'p, b. 

and b'~, one again determines new CI coefficients B's. The process (ii) and 
(iii) are repeated until the convergence of the energy or the vectors is achieved, 
which usually requires less than five cycles of (ii) and (iii). 

Now we,discuss some important properties of the TCEHP wave function 
~pTC. Analogous to Eq. (9), lp TC c a n  be expressed as 

I~ TC = [(Ba#/]//-2) (A~A~+ AYuA.) + (Bp./]//2) (A~vAg++_ A~ Ap)] [ G) .  (23a) 

The orthogonalities of q~. and q~r and q~, and ~., respectively, are equivalent 
to the anticommutation relationships: 

[A~, Ap] + - [A* u, A,] + = 0 .  

By using the expansion Eq. (3), ~pTC can be expanded into the sum of virtual 
singlet excited configurations: 

~TC= ~.~ ~ (B~ubj~bku + Bp~bj~bk, ) 7J(tpj~hOk) (238) 
J k 

which will be compared in Sec. III with the CSECI wave function, Eq. (10). 
Since 7 -'Tc is written as Eq. (23), the one particle density matrix is simply 

calculated as follows. 

~TC(1, 1') = Q~(1, 1') + (B~.) ~ (,~*(1) ,~.(1') -- ~*(1)  ~ (1 ' ) )  

+ (Bp~) 2 (~b*(1) ~b~(1') - ~ ( 1 )  ~b~(l')). 

where oa(l, l') is the density matrix of the ground state. From this matrix one- 
electron properties of the state can be easily calculated. 

The following Brillouin theorems are valid in TCEHP. Assume that the 
orbital qS~ is known, which belongs to the occupied orbital subspace {~Pi} and is 
orthogonal to ~b~ and ~ba. By multiplying 4)* on Eq. (14a), one obtains 

0 = (B~.): <~, IF I ~ >  + (B~u) 2 L~ + B~uBp~L~ 
= -- B~ ( {B~ 7J(~b~--+ ~b~) + B~ ~(~b~ ~ 0v)} I ~  I ~(~b~ ~ q~,)>. 

that is, 
< ~(q~<-, 4~,) I xr I 'FTC) ---- 0. (24a) 

Also, from Eq. (14b) 
< 7t(4)~ ~ q~v) 19f ] 7tTC> = 0. (24b) 
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Similarly one can show that 
< ~u(4~--' q~) I ~ I ~TC> = 0 (24C) 

( ~U(q~ ~ q~z) ] ~ f  r ~U Tc> = 0 (24d) 

when q~a is a vacant orbital orthogonal to ~bu and ~b~. 
The use of the Hermiticity of Lagrange multipliers [19] leads to additional 

theorems. Eqs. (14) and (15) and 2~p = 2~ give: 

B~uBp~L~ + (Bpv) 2 < ~  I gl ~ >  + (Bp0 2 L~ 

= (B~,.) z <4)~ I FI q~D + (B=,,) 2 i ~ .  + B~uBp~L~. 

By subtracting B~,B~ <~bu[FJ~b~> from both sides, one can show 

(25a) 
= - B~u < 7J(Op-~ (ou) l~ l{B.u  ~P(O~'-* Ou) + B~ 7"(49p ~ q~0}>- 

Also, from the relationships 2u~- 2~u, 

_B~uBpvL~+(Bp~)2<~uIF[ 2 Itv ~>-(Bp0 Gp 
l~b~>-(B,.) L,, - B,,Bp~L~,. 

By subtracting B~uB~ <q~ iF] q~p> from both sides one obtains 

Bp~<'P(d?~C~)[ffFl{B~g~(C~O~)+ B~Y'(cb~r (25b) 
= B~,<{B~. }Y(~)~ ~ q~u) + B~ }P(d)~-> ~b0} ] J t ~ ] ~(qb~ ~ ~b~)> 

By combining (25a) and (25b), the relationships 

< ~ty(~ a__.+ (])v) I ~ I (//TC> ~--- 0 (26a) 

< ~(~a-- '  ~bu) I 5/f I ~yTC> = 0 (26b) 
are proved, unless 

IB~.l = IB~l �9 (27) 

If the equality occurs, by an appropriate linear transformations of ~b~ and ~b~, 
and of ~b u and ~b~, a new set of wave functions can be defined which satisfy 
Eq. (26). 

In addition, since ~uTC is equivalent to a linear combination of singly ex- 
cited configurations [Eq. (23 a)] the usual Brillouin theorem between the ground 
state is still valid. 

< (//G I X I ~T/TC> = 0 .  (28) 

One of the features of EHP  method is that the wave function and energy in 
this method are approximations to the complete SECI in the sense of the 
variation method; that is, the energy gives an upper bound of that of the 
complete SECI. 

4. Numerical Results and Discussion 

Two-configurational EHP  method was programmed for a modified version of 
GAUSS 70 ab initio program [16]. A few examples of numerical results are 
given in Tables 1-3. The second and third columns in Tables 1 and 2 show the 
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Table 1. Comparison of the vertical excitation energies of H e H2 ~ and HNO b 

293 

Molecules SCF MO EHP CSECI 

state One conf. c Two conf. ~ One conf. Two conf. 
eV eV eV eV eV 

H2 H 2 
Singlet 8.568 8.565 8.531(6) c 8.515(11) 8.515(11) c 
Triplet 6.105 5.961 5.131 (6) 4.872 (11) 4.872 (11) 

HNO 

3A" -0.806 0.806 0.471 (8) 0.469 (17) 0.312 (29) 
~A "d 2.049 2.049 1.756 (8) 1.754 (17) 1.653 (29) 
3A' 3.941 3.941 3.586 (2) 3.533 (17) 3.515 (65) 
1A' 10.115 10.078 9.997 (2) 9.958 (17) 9.901 (65) 

a No symmetry. Four atoms are placed at (_+0.5, 0), (+0.2916, 1.1818), and (+0.2916, 2.18t8)~ in a 
plane. Basis set: 4-31 G. 

b The experimental geometry for the ground state [20]. (R(CH)=l .063~ ,  R(CN)=I .212~ ,  
HCN = 108.6~ Basis set: 4-31 G. Ground state configuration: ...(3a') 2 (4a') 2 (5a') 2 (6a') 2 ( 1 a") 2 (7a') 2 . 

Total energy of the ground state: - 129.57778 Hartree. 
Nv: Degree of freedom of variation parameters. For SCF MO (one configuration), Nv=0 ;  for 
SCF MO (2 configuration), Ne = 1. 

a The experimental adiabatic excitation energy: 1.63 eV [20]. 

Table 2. Comparison of the vertical excitation energies of HzCO 

Geometry SCF MO EHP CSECI 

states One conf. Two conf. One conf. Two conf. 
eV eV eV eV eV 

Planar a 

3Az(n-n* ) 5.801 5.801 3,611 (3) d 3.608 (6) 3.555 (8) 
1Az(~Tr* ) 6.245 6.245 4.420 (3) 4.419 (6) 4.377 (8) 
3A 1 ( n ~ * )  7.854 7.854 c 4.879 (2) 4.872 (6) c 4.779(28) 
1A~ (n~*)  12.087 10.784 ~ 12.079 (2) 10.607 (6) ~ 10.411 (28) 
~B~(a-zc*) 11.518 11.517 9.358 (6) 9.353(10) 9.321(18) 
1B2 (~a*) 10.261 10.259 10.182 (4) 10.172 (11) 10.142 (22) 

Bent b 

3A" (n~z*) 4.380 4.380 2.654 (9) 2.654 (17) 2.601 (35) 
~A" (n-n*) 4.974 4.974 3.525 (9) 3.525 (17) 3.492 (35) 
3A' (72-72*) 4.772 4.772 2.721 (13) 2.717 (17) 2.670 (59) 
~A' (a-n*) 10.48t 10.475 7.534(13) 7.517(17) 7.505(59) 

a R(CH)= 1.120A, 5~HCH= 118 ~ , R (CO)=I .210A [11]. Basis set: STO3G plus one p (the 
exponents: 0.106(O) and 0.06(C)). Ground state: ...(3aOe(4al)2(lb2)2(5al)Z(lbO2(2b2) 2. Total 
energy - 112.46157 Hartree. 

b The experimental geometry for the l (~n*)  state 1A 2 [20]. (R(CH)= 1.093A, ~ H C H =  119 ~ 
R(CO)= 1.323A, the out of plane angle= 31~ Basis set: STO-3G plus one p (the exponents: 
0.106 (O) and 0.06 (C)). Ground state: ...(3a')Z(4a')Z(la")Z(5a')Z(6a')2(2a") 2. Total energy: - 112.47460. 
The difference of the total energy between two geometry is 0.355 eV, which should be added to 
calculate the adiabatic excitation energies. 

~ Approximated by Bl(lbl~261)+B2(2bz~462). When B'l(1bl--*2b2)+B'2(5a~6a~) is used, 
7.854 (SCF) and 4.811 (TCEHP) for the triplet state, and 12.082 (SCF) and 11.152 (TCEHP) for 
the singlet state, respectively. 

d NF: see c) of Table 1. 
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energies of an electronic configuration and of the 2 x 2 configuration inter- 
action wave function, respectively, both based on the canonical SCF MO of the 
ground state. The fourth and fifth columns are the energies obtained by the one- 
and two-configurational EHP method. In the last column results of the configura- 
tion interaction including completely all singly excited configurations (CSECI) 
are given. 

One can see in the Tables that both EHP methods give very good approxi- 
mation to the CSECI, even though a degree of freedom NF in variation parameters 
in EHP methods is much smaller than in the CSECI. In the CI, N cI is a number of 
configurations included - i (because of the normalization). In the one-configura- 
tional EHP, Ne is written as 

N ~ = n~ + m, - 2 

where n~ is a number of occupied orbitals which belong to the same irreducible 
representation as the orbital qS, and m, is a number of vacant orbitals which 
belong to the same irreducible representation as the orbital ~b u. Because of the 
normalization requirement of two orbitals, two has to be subtracted. The degree 
of freedom in two-configurational EHP is expressed as 

N [  c~"r = n~, + n~ + m~, + m v - N~ + t 

where Ns is 4 usually, but is 6 when 4~ and qSp belong to the same irreducible 
representation, because the orthogonality in addition to the normalization is 
required between ~b~ and qSp and also between 4~, and qS~. The (2 x 2) CI coeffi- 
cients give an additional degree of freedom. In Tables Nr is shown in paren- 
theses. 

In the H2-H2 system, N r of TCEHP is equal to that of CSECI. Therefore, 
in spite of the fact that equations solved are very different in the two methods, 
both variation methods should, and in fact do, give identical results. 

Differences between the energies of the TCEHP and the CSECI methods are 
usually tess than 0.06 eV (0.002 Hartree) with a few exceptions. Large differences 
are observed in the A" states of HNO and in the A1 states of the planar 
H2CO, but still they are less than 0.2 eV (0.0007 Hartree). In the case of the 
H2CO A 1 state, a linear combination of at least three configurations ( a x ~ a * ,  

b l ~b*, and b 2 ~ b * )  might be required to describe the wave functions appro- 
priately. 

As was shwon in Eq. (23b), the TCEHP wave function can be expanded as a 
linear combination of singly excited configurations based on canonical SCF MO's. 
The expansion coefficients for leading configurations for bent H2CO are shown 
in Table 3 as well as coefficients in the CSECI calculation. As anticipated from 
the agreement of energies, two sets of coefficients agree quite well. 

One of the most important advantages of the EHP method over the CI 
method is the saving of the computer time. For instance, in the bent H2CO with 
STO 3 G + p basis set (20 basis functions) the calculation of the ground state cano- 
nical SCF MO took 20 cycles and 1.34 CPU min on an IBM 360/65. The one 
configurational EHP method took 2-2.5 cycles and 0.23-0.40 CPU min per state, 
and the TCEHP method required 2.5-10 cycles and 0.63-2.40 rain per state. On 
the other hand the CSECI calculation including integral transformation took 
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12 min. The difference of time needed between the CI method and the EHP 
methods increased drastically with a number of basis functions. Since the TCEHP 
method is a variational approximation to the CSECI method, the major advan- 
tage of the former will be for large molecules. Actually we have performed one 
and two configurational EHP calculations for many geometries and many ex- 
cited states of formic acid dimer with 52 basis functions, hydrogen maleate ion 
with 43 basis functions and the tetracyanoethylene-water molecular complex 
with 57 basis functions [17]. For these systems a CI calculation would be ex- 
tremely expensive. 

5. Conclusion 

(1) At first, the (one configurational) EHP method is reviewed. It is shown 
that the EHP wave function, which is a single determinant variational wave 
function, is an approximation to the wave function of the complete singly excited 
configuration interaction. 

(2) The two configurational EHP method is developed. The variational equa- 
tion is solved iteratively by using the quadratic convergence method. Extensions 
of the Broullioun theorem are proved. This method is also an approximation 
to the complete singly excited configuration interaction. 

(3) The agreement of EHP results with CI results is excellent. 
(4) The EHP methods have clear advantage in the computer time require- 

ment over the CI method and especially suited for a calculation of approximate 
wave functions and energies of excited states of large molecules. 

(5) The EHP methods can be applied to excited states which belong to the 
same irreducible representation as the ground state. Straight SCF methods for 
excited states fail to do so. 
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